
ITERATIVEREPAIRPLANNINGFORSPACECRAFTOPERATIONSUSINGTHEASPENSYSTEM

G.Rabideau,R.Knight,S.Chien,A.Fukunaga,A.Govindjee

JetPropulsionLaboratory,CaliforniaInstituteofTechnology
4800OakGroveDrive,M/S525-3660,Pasadena,CA91109-8099

phone:+1818393-5364,fax:+1818393-5244,email:{firstname.lastnamel(a)jpl.nasa.gov

ABSTRACT

Thispaperdescribesthe AutomatedSchedulingand
PlanningEnvironment(ASPEN).ASPENencodes
complexspacecraftknowledgeof operabilityconstraints,
flightrules,spacecrafthardware,scienceexperimentsand
operationsproceduresto allowfor automatedgeneration
of low levelspacecraftsequences.Usinga technique
callediterative repair, ASPEN classifies constraint

violations (i.e., conflicts) and attempts to repair each by

performing a planning or scheduling operation. It must
reason about which conflict to resolve first and what

repair method to try for the given conflict. ASPEN is
currently being utilized in the development of automated

planner/scheduler systems for several spacecraft,

including the UFO-1 naval communications satellite and

the Citizen Explorer (CX1) satellite, as well as for

planetary rover operations and antenna ground systems

automation. This paper focuses on the algorithm and

search strategies employed by ASPEN to resolve

spacecraft operations constraints, as well as the data

structures for representing these constraints.

1. INTRODUCTION

Planning and scheduling technology offers considerable

promise in automating spacecraft operations. Planning

and scheduling spacecraft operations involves generating

a sequence of low-level spacecraft commands from a set

of high-level science and engineering goals. We discuss
ASPEN and its use of an iterative repair algorithm for

planning and scheduling as well as for replanning and

rescheduling.

ASPEN is a reconfigurable planning and scheduling

software framework [Fuknnaga, et al., 1997]. Spacecraft

knowledge is encoded in ASPEN under seven core
classes: activities, parameters, parameter dependencies,

temporal constraints, reservations, resources and state
variables. An activity is an occurrence over a time

interval that in some way affects the spacecraft. It can

represent anything from a high-level goal or request to a
low-level event or command. Activities are the central

structures in ASPEN, and also the most complicated. A

more detailed definition is given in a later section.

Together, these constructs can be used to define

spacecraft components, procedures, rules and constraints
in order to allow manual or automatic generation of valid

sequences of activities, also called plans or schedules.

Once the types of activities are defined, specific instances
can be created fr,om the types. Multiple activity instances

created from the same type might have dd'fi:rent

parameter values, including the Slall illlqt.' '_|,lll\ ,.':lll)k.'tLI

imaging activmes, lbv example, can bc created llOlll the

same type but with different image targets and at dtflerent

start times. The sequence of activity instances is what

defines the plan or schedule.

The job of a planner/scheduler, whether manual or

automated, is to accept high-level goals and generate a set

of low-level activities that satisfy the goals and do not

violate any of the spacecraft flight rules or constraints.

ASPEN provides a Graphical User Interface (GUI) for

manual generation and/or manipulation of activity

sequences. However, the automated planner/scheduler
will be the focus of the remainder of this paper.

In ASPEN, the main algorithm for automated planning

and scheduling is based on a technique called iteranve

repair [Zweben, et al., 1994]. In iterative repair, the

conflicts in the plan are detected and addressed one at a

time until no conflicts exist, or a user-defined time limit
has been exceeded. A conflict is a violation of a

reservation, parameter dependency or temporal constraint.

Conflicts can be repaired by means of several predefined

methods. The repair methods are: moving an acttvlty.

adding a new instance of an acttxity, delettng an acuvJty.

detailing an activity, abstracting an acuvtty, makin_ a

reservation of an activity, canceling a reservation,

coanecting a temporal constraint, disconnecting a

constraint, and changing a parameter value. The repair

algorithm may use any of these methods in an attempt to
resolve a conflict. How the algorithm works is largely

dependent on the type of conflict being resolved.

i

.r i !

'4/
I I

u i a
i

r-....i...."2.

Figure 3: An activity hierarchy.

An activity has a set of parameters, parameter

dependencies, temporal constraints, reservations and

decompositions. All activities have at least three

parameters: a start time, an end time and a duration. There

is also at least one parameter dependency, relating these

three parameters. In addition, all activities have at least

one temporal constraint that prevents the activity from

occurring outside of the planning horizon. Any additional

components are optional.

3. CONFLICTS

A complete plan may not always be consistent with the
constraints in the model. A conflict is a violation of one

of the model constraints. There are nine basic types of

conflicts in ASPEN:

• Abstract activity conflicts

• Parameter dependency conflicts

• Unassigned temporal constraint conflicts

• Violated temporal constraint conflicts

• Unassigned reservation conflicts

• Depletable resource conflicts
• Non-depletable resource conflicts

• State usage conflicts
• State transition conflicts.

Each conflict provides information about what objects are

involved and how to repair the conflict.

An abstract activity conflict is simply an activity that has

not yet been decomposed into its sub-activities. All

activities must be expanded to their most detailed level. If

an activity has more than one decomposition, the

planning algorithm must decide which decomposition to

use when detailing the activity. Detailing an activity

involves creating instances of the activities specified in

the decomposition. In addition, all temporal constraints

and parameter dependencies must be connected among
the new sub-activities and the parent activity.

A parameter dependency conflict is a violation of a

functional relationship between two parameters. In other

words, the value of a parameter is not equal to the result

of a function flaat constrains that parameter value. For

example, a parameter p may be required to be the square

of another parameter q. If q is assigned to 5 and p is

assigned any value other than 25, this will be a parameter

dependency conflict. This conflict can be resolved by

assigning a different value to either p or q.

An unassigned temporal constraint conflict occurs when a

temporal constraint exists for an activity, but an activity

instance has not been selected to satisfy the constrain!

(see Figure 4). A temporal constraint ,s defined m one

activity type A and specifies the requirement for another

activity 13 within some temporal relationship. When an
instance of A is created, the temporal constraint is created

and is not initially assigned an instance of 13.The conflict

computes all activity instances that can repair this conflict

(basically, all instances of type 13).

A: al

I !

u i "-"-_ B

B b] l'} b2 t", 1",3

I I I I I I
I I I I l I

Figure 4: An unassigned temporal constraint conflict
requiring an activity of type B. Any of b 1, b2 or b3
can be use, or a new instance of type B can be added.

A violated temporal constraint conflict occurs when a

temporal constraint has been assigned, but the

relationship (specified in the model) does not hold for the

two participating activities (see Figure 5). For example,

consider an activity instance A that musl end before the

start of activity instance B by at least 10 seconds but at
most 1 minute. IfA ends at time t:, then there is a conflict
'if 13 does not start between time t+10 and t+60. The

conflict keeps track of the contributing activities, which

in this example includes activities A and 13. In addition,
the conflict computes the start time intervals for moving

an activity that would repair the conflict. Continuing with

0 9

I •-r-,.,,

,
| !

7 16

IIIIIIIIIIIIIIIIII

Figure 5: A violated temporal
constraint conflict.

conflicts, the contributor is only the activity that changes

the state (i.e., makes the illegal transition). Again, the

changer must be moved to a time later than the state in
conflict or earlier than the previous state. As with

resource conflicts, new activities can be created to repair

state variable conflicts. For a state usage conflict, we can

add activities that can change to the desired state. These
activities must be added at a time before the conflicting

user, but after the conflicting changer. For state transition

conflicts, we can add activities that can change to a state

that makes a legal transition. These activities must be

added between the two conflicting changers.

4. ITERATIVE REPAIR SEARCH

ASPEN organizes its search around several types of
constraints that must hold over valid plans. ASPEN then

has organized around each constraint type, a classification

of the ways in which the constraint may be violated.
These violations are called conflicts. Organized around

each conflict type, there is a set of repair methods. The

search space consists of all possible repair methods

applied to all possible conflicts in all possible orders. We

describe one tractable approach to searching this space.

The iterative repair algorithm searches the space of

possible schedules in ASPEN by making decisions at

certain choice points, and modifying the schedule based

on these decisions. The choice points are:

• Selecting a conflict

* Selecting a repair method

• Selecting an activity for the chosen repair method

• Selecting a start time for the chosen activity

• Selecting a duration for the chosen activity
• Selecting timelines for reservations

• Selecting a decomposition for detailing

• Selecting parameters to change

, Selecting values for parameters
Given a schedule with a set of conflicts of all types, the

first step in the iterative repair algorithm is to select one
of the conflicts to be attacked. Next, a method is selected

for repairing the conflict. All possible repair methods are:

• Moving an existing activity to a new location

• Creating a new activity and insert at a location

• Deleting an existing activity

• Connecting a temporal constraint between two
activities

• Disconnecting a temporal constraint between two
activities

* Detailing an activity

• Abstracting an activity

• Making reservations of an activity

• Canceling reservations of an activity

• Grounding a parameter in an activity

• Applying a dependency function between two

parameters

As described in the previous section, the type of conflict
will determine the set of possible repair methods for any

given conflict. If it was decided to try to move or delete

an activity, the algorithm must decide which activity to

move or delete. The type of conflict and the location of
the conflict will determine the set of possible activities

that. if moved or deleted, ma_ resohe the conJ'[it_l In

addition, a ne_ starl time alld dtllflllOl'l IlqUNI hu d?,'_l_21"lt.'t]

to the acUvlty. If it was decided Io try to add a ncx_

activity, the activity type must be chosen from the hst of

possible types determined by the conflict. For abstract

activity conflicts, the repair algorithm will most likely
choose to detail the activity. If it has multiple

decompositions, one of them must be chosen. Deciding to

abstract an activity requires choosing which activity to

abstract. When making a reservation in an attempt to

resolve a conflict, a resource or state variable must be

chosen for the set of possible resources or state variables.

Also, if the reservation has an unspecfl'ied _alue one

must be chosen for ii. ('ancehn_: rc_cr\ ;.l|lt)ll._ ,0111\

requires choosing which reservation to caqcel. 11 the

repair algorithm has decided to connect a temporal
constraint, the specific activity for the constraint must be

selected. When disconnecting, only the constraint to be

disconnected must be chosen. Finally, changing a

parameter value requires choosing a new value for the

parameter. After all decisions are made and the repair

method is performed, the effects are propagated and the

new conflicts are computed. This process repeats until no
conflicts exist or a time limit has been exceeded.

5. SEARCH HEURISTICS

All throughout the iterative repair algorithm, many
decisions must be made. In other words, there are many

ways in which a conflict may be resolved. Some ways

ultimately work better than others do. For example,

deleting an activity may resolve a resource conflict

caused by that activity. However, that activity may have

been required by other activities. Or, if the activity was a

high-level goal, the user might prefer to have as many

goals satisfied as possible. Another typical example
involves choosing a location to move an activity Many

locations may resoh'e the conllic_ being add,-essed, but

many locations may also create addition conlhcts In

order to guide the search toward more fruitful decisions,
the user can define a set of search heuristics.

In ASPEN, a heuristic is a function that orders and prunes

a list of choices for a particular decision in the search.

Heuristics can be defined at each of the choice points in

the algorithm. For example, one heuristic might sort the

/

B., She_od, R., Govindjee, A., Yan, D.,

5pacecraaft __te np laSnniFngkZog_iedge "iRnePAs;EINn'g

Artificial Intelligence Planning System._" Workshop

Knowledge Acquisition, Pittsburgh, PA, 1998.

on

